Matrix Product States for Quantum Stochastic Modeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic matrix product states.

The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows us to define the analogue of Schmidt coefficients for steady states of nonequilibrium stochastic processes. We discuss a new measure for correlations which is analogous to entanglement entropy, the entropy cost S(C), and show that this measure quantifies the bond dimension nee...

متن کامل

Continuous matrix product states for quantum fields.

We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows us to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.

متن کامل

Matrix product states for quantum metrology.

We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in the asymptotic limit of a large number of probes.

متن کامل

Quantum Machine Learning Matrix Product States

Matrix product states minimize bipartite correlations to compress the classical data representing quantum states. Matrix product state algorithms and similar tools—called tensor network methods—form the backbone of modern numerical methods used to simulate many-body physics. Matrix product states have a further range of applications in machine learning. Finding matrix product states is in gener...

متن کامل

Unsupervised Generative Modeling Using Matrix Product States

Generative modeling, which learns joint probability distribution from training data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2018

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.121.260602